Electron scattering through a quantum dot
نویسندگان
چکیده
منابع مشابه
Effect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملeffect of asymmetric quantum dot rings in electron transport through a quantum wire
the electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting hamiltonian anderson tunneling method. in this paper we concentrate on the configuration of the quantum dot rings. we show that the asymmetric structure of qd-scatter system strongly influences the amplitude an...
متن کاملQuantum Theory of Electron Transport through Single-level Quantum Dot
Abstract. A new approach in the quantum theory of few-electron nanoelectronic devices – the S-matrix approach – is presented in a simple example: a single-electron transistor consisting of a single-level quantum dot connected with two metallic leads through the corresponding potential barriers. The electron transport through the quantum dot due to the electron tunneling between the dot and the ...
متن کاملElectron transport through a quantum dot assisted by cavity photons.
We investigate transient transport of electrons through a single quantum dot controlled by a plunger gate. The dot is embedded in a finite wire with length Lx assumed to lie along the x-direction with a parabolic confinement in the y-direction. The quantum wire, originally with hard-wall confinement at its ends, ±Lx/2, is weakly coupled at t = 0 to left and right leads acting as external electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: physica status solidi (c)
سال: 2007
ISSN: 1610-1634,1610-1642
DOI: 10.1002/pssc.200673274